API

tmtoolkit.bow

tmtoolkit.bow.bow_stats

Common statistics from bag-of-words (BoW) matrices.

tmtoolkit.bow.bow_stats.codoc_frequencies(dtm, min_val=1, proportions=0)

Calculate the co-document frequency (aka word co-occurrence) matrix for a document-term matrix dtm, i.e. how often each pair of tokens occurs together at least min_val times in the same document. If proportions is True, return proportions scaled to the number of documents instead of absolute numbers.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

  • min_val – threshold for counting occurrences

  • proportions – one of Proportion: NO (0) – return counts; YES (1) – return proportions; LOG (2) – convert input to dense matrix if necessary and return log(proportions + 1)

Returns

co-document frequency (aka word co-occurrence) matrix with shape (vocab size, vocab size)

tmtoolkit.bow.bow_stats.doc_frequencies(dtm, min_val=1, proportions=0)

For each term in the vocab of dtm (i.e. its columns), return how often it occurs at least min_val times per document.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

  • min_val – threshold for counting occurrences

  • proportions – one of Proportion: NO (0) – return counts; YES (1) – return proportions; LOG (2) – return log of proportions

Returns

NumPy array of size M (vocab size) indicating how often each term occurs at least min_val times.

tmtoolkit.bow.bow_stats.doc_lengths(dtm)

Return the length, i.e. number of terms for each document in document-term-matrix dtm. This corresponds to the row-wise sums in dtm.

Parameters

dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw terms counts

Returns

NumPy array of size N (number of docs) with integers indicating the number of terms per document

tmtoolkit.bow.bow_stats.idf(dtm, smooth_log=1, smooth_df=1)

Calculate inverse document frequency (idf) vector from raw count document-term-matrix dtm with formula log(smooth_log + N / (smooth_df + df)), where N is the number of documents, df is the document frequency (see function doc_frequencies), smooth_log and smooth_df are smoothing constants. With default arguments, the formula is thus log(1 + N/(1+df)).

Note that this may introduce NaN values due to division by zero when a document is of length 0.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

  • smooth_log – smoothing constant inside log()

  • smooth_df – smoothing constant to add to document frequency

Returns

NumPy array of size M (vocab size) with inverse document frequency for each term in the vocab

tmtoolkit.bow.bow_stats.idf_probabilistic(dtm, smooth=1)

Calculate probabilistic inverse document frequency (idf) vector from raw count document-term-matrix dtm with formula log(smooth + (N - df) / df), where N is the number of documents and df is the document frequency (see function doc_frequencies).

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

  • smooth – smoothing constant (setting this to 0 can lead to -inf results)

Returns

NumPy array of size M (vocab size) with probabilistic inverse document frequency for each term in the vocab

tmtoolkit.bow.bow_stats.sorted_terms(mat, vocab, lo_thresh=0, hi_tresh=None, top_n=None, ascending=False, table_doc_labels=None)

For each row (i.e. document) in a (sparse) document-term-matrix mat, do the following:

  1. filter all values according to lo_thresh and hi_thresh

  2. sort values and the corresponding terms from vocab according to ascending

  3. optionally select the top top_n terms

  4. generate a list with pairs of terms and values

Return the collected lists for each row or convert the result to a data frame if document labels are passed via data_frame_doc_labels (see shortcut function sorted_terms_table).

Parameters
  • mat – (sparse) document-term-matrix mat (may be tf-idf transformed or any other transformation)

  • vocab – list or array of vocabulary corresponding to columns in mat

  • lo_thresh – if not None, filter for values greater than lo_thresh

  • hi_tresh – if not None, filter for values lesser than or equal hi_thresh

  • top_n – if not None, select only the top top_n terms

  • ascending – sorting direction

  • table_doc_labels – optional list/array of document labels corresponding to mat rows

Returns

list of list with tuples (term, value) or data table with columns “doc”, “term”, “value” if data_frame_doc_labels is given

tmtoolkit.bow.bow_stats.sorted_terms_table(mat, vocab, doc_labels, lo_thresh=0, hi_tresh=None, top_n=None, ascending=False)

Shortcut function for sorted_terms which generates a data table with doc_labels.

Parameters
  • mat – (sparse) document-term-matrix mat (may be tf-idf transformed or any other transformation)

  • vocab – list or array of vocabulary corresponding to columns in mat

  • doc_labels – list/array of document labels corresponding to mat rows

  • lo_thresh – if not None, filter for values greater than lo_thresh

  • hi_tresh – if not None, filter for values lesser than or equal hi_thresh

  • top_n – if not None, select only the top top_n terms

  • ascending – sorting direction

Returns

data table with columns “doc”, “term”, “value”

tmtoolkit.bow.bow_stats.term_frequencies(dtm, proportions=0)

Return the number of occurrences of each term in the vocab across all documents in document-term-matrix dtm. This corresponds to the column-wise sums in dtm.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

  • proportions – one of Proportion: NO (0) – return counts; YES (1) – return proportions; LOG (2) – return log of proportions

Returns

NumPy array of size M (vocab size) with integers indicating the number of occurrences of each term in the vocab across all documents.

tmtoolkit.bow.bow_stats.tf_binary(dtm)

Transform raw count document-term-matrix dtm to binary term frequency matrix. This matrix contains 1 whenever a term occurred in a document, else 0.

Parameters

dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

Returns

(sparse) binary term frequency matrix of type integer of size NxM

tmtoolkit.bow.bow_stats.tf_double_norm(dtm, K=0.5)

Transform raw count document-term-matrix dtm to double-normalized term frequency matrix K + (1-K) * dtm / max{t in doc}, where max{t in doc} is vector of size N containing the maximum term count per document.

Note that this may introduce NaN values due to division by zero when a document is of length 0.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts

  • K – normalization factor

Returns

double-normalized term frequency matrix of size NxM

tmtoolkit.bow.bow_stats.tf_log(dtm, log_fn=<ufunc 'log1p'>)

Transform raw count document-term-matrix dtm to log-normalized term frequency matrix log_fn(dtm).

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts.

  • log_fn – log function to use; default is NumPy’s numpy.log1p, which calculates log(1 + x)

Returns

(sparse) log-normalized term frequency matrix of size NxM

tmtoolkit.bow.bow_stats.tf_proportions(dtm)

Transform raw count document-term-matrix dtm to term frequency matrix with proportions, i.e. term counts normalized by document length.

Note that this may introduce NaN values due to division by zero when a document is of length 0.

Parameters

dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts

Returns

(sparse) term frequency matrix of size NxM with proportions, i.e. term counts normalized by document length

tmtoolkit.bow.bow_stats.tfidf(dtm, tf_func=<function tf_proportions>, idf_func=<function idf>, **kwargs)

Calculate tfidf (term frequency inverse document frequency) matrix from raw count document-term-matrix dtm with matrix multiplication tf * diag(idf), where tf is the term frequency matrix tf_func(dtm) and idf is the document frequency vector idf_func(dtm).

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw term counts

  • tf_func – function to calculate term-frequency matrix; see tf_* functions in this module

  • idf_func – function to calculate inverse document frequency vector; see tf_* functions in this module

  • kwargs – additional parameters passed to tf_func or idf_func like K or smooth (depending on which parameters these functions except)

Returns

(sparse) tfidf matrix of size NxM

tmtoolkit.bow.bow_stats.word_cooccurrence(dtm, min_val=1, proportions=0)

Calculate the co-document frequency (aka word co-occurrence) matrix. Alias for codoc_frequencies.

tmtoolkit.bow.dtm

Functions for creating a document-term matrix (DTM) and some compatibility functions for Gensim.

tmtoolkit.bow.dtm.create_sparse_dtm(vocab, docs, n_unique_tokens, vocab_is_sorted=False, dtype=None)

Create a sparse document-term-matrix (DTM) as matrix in COO sparse format from vocabulary array vocab, a list of tokenized documents docs and the number of unique tokens across all documents n_unique_tokens.

The DTM’s rows are document names, its columns are indices in vocab, hence a value DTM[j, k] is the term frequency of term vocab[k] in document j.

A note on performance: Creating the three arrays for a COO matrix seems to be the fastest way to generate a DTM. An alternative implementation using LIL format was ~2x slower.

Memory requirement: about 3 * <n_unique_tokens> * 4 bytes with default dtype (32-bit integer).

See also

This is the “low level” function. For the straight-forward to use function see tmtoolkit.corpus.dtm, which also calculates n_unique_tokens.

Parameters
  • vocab – list or array of vocabulary used as column names; size must equal number of columns in dtm

  • docs – a list of tokenized documents

  • n_unique_tokens – number of unique tokens across all documents

  • vocab_is_sorted – if True, assume that vocab is sorted when creating the token IDs

  • dtype – data type of the resulting matrix

Returns

a sparse document-term-matrix in COO sparse format

tmtoolkit.bow.dtm.dtm_and_vocab_to_gensim_corpus_and_dict(dtm, vocab, as_gensim_dictionary=True)

Convert a (sparse) DTM and a vocabulary list to a Gensim Corpus object and Gensim Dictionary object or a Python dict.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw terms counts

  • vocab – list or array of vocabulary

  • as_gensim_dictionary – if True create Gensim Dictionary from vocab, else create Python dict

Returns

a 2-tuple with (Corpus object, Gensim Dictionary or Python dict)

tmtoolkit.bow.dtm.dtm_to_dataframe(dtm, doc_labels, vocab)

Convert a (sparse) DTM to a pandas DataFrame using document labels doc_labels as row index and vocab as column names.

Parameters
  • dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw terms counts

  • doc_labels – document labels used as row index (row names); size must equal number of rows in dtm

  • vocab – list or array of vocabulary used as column names; size must equal number of columns in dtm

Returns

pandas DataFrame

tmtoolkit.bow.dtm.dtm_to_gensim_corpus(dtm)

Convert a (sparse) DTM to a Gensim Corpus object.

See also

gensim_corpus_to_dtm for the inverse function or dtm_and_vocab_to_gensim_corpus_and_dict which additionally creates a Gensim Dictionary.

Parameters

dtm – (sparse) document-term-matrix of size NxM (N docs, M is vocab size) with raw terms counts

Returns

a Gensim gensim.matutils.Sparse2Corpus object

tmtoolkit.bow.dtm.gensim_corpus_to_dtm(corpus)

Convert a Gensim corpus object to a sparse DTM in COO format.

See also

dtm_to_gensim_corpus for the inverse function.

Parameters

corpus – Gensim corpus object

Returns

sparse DTM in COO format

tmtoolkit.corpus

Corpus class and corpus functions

Functions to visualize corpus summary statistics

tmtoolkit.tokenseq

Module for functions that work with text represented as token sequences, e.g. ["A", "test", "document", "."] and single tokens (i.e. strings).

Tokens don’t have to be represented as strings – for many functions, they may also be token hashes (as integers). Most functions also accept NumPy arrays instead of lists / tuples.

RoleNadif2011(1,2,3,4)

Role, François & Nadif, Mohamed. (2011). Handling the Impact of Low Frequency Events on Co-occurrence based Measures of Word Similarity - A Case Study of Pointwise Mutual Information.

Bouma2009(1,2,3,4)

Bouma, G. (2009). Normalized (pointwise) mutual information in collocation extraction. Proceedings of GSCL, 30, 31-40.

tmtoolkit.tokenseq.index_windows_around_matches(matches, left, right, flatten=False, remove_overlaps=True)

Take a boolean 1D array matches of length N and generate an array of indices, where each occurrence of a True value in the boolean vector at index i generates a sequence of the form:

[i-left, i-left+1, ..., i, ..., i+right-1, i+right, i+right+1]

If flatten is True, then a flattened NumPy 1D array is returned. Otherwise, a list of NumPy arrays is returned, where each array contains the window indices.

remove_overlaps is only applied when flatten is True.

Example with left=1 and right=1, flatten=False:

input:
#   0      1      2      3     4      5      6      7     8
[True, True, False, False, True, False, False, False, True]
output (matches *highlighted*):
[[0, *1*], [0, *1*, 2], [3, *4*, 5], [7, *8*]]

Example with left=1 and right=1, flatten=True, remove_overlaps=True:

input:
#   0      1      2      3     4      5      6      7     8
[True, True, False, False, True, False, False, False, True]
output (matches *highlighted*, other values belong to the respective "windows"):
[*0*, *1*, 2, 3, *4*, 5, 7, *8*]
Parameters
  • matches (ndarray) –

  • left (int) –

  • right (int) –

  • flatten (bool) –

  • remove_overlaps (bool) –

Return type

Union[List[List[int]], ndarray]

tmtoolkit.tokenseq.npmi(x, y, xy, n_total=None, logfn=<ufunc 'log'>, *, k=1, normalize=True)

Calculate pointwise mutual information measure (PMI) either from probabilities p(x), p(y), p(x, y) given as x, y, xy, or from total counts x, y, xy and additionally n_total. Setting k > 1 gives PMI^k variants. Setting normalized to True gives normalized PMI (NPMI) as in [Bouma2009]. See [RoleNadif2011] for a comparison of PMI variants.

Probabilities should be such that p(x, y) <= min(p(x), p(y)).

Parameters
  • x (ndarray) – probabilities p(x) or count of occurrence of x (interpreted as count if n_total is given)

  • y (ndarray) – probabilities p(y) or count of occurrence of y (interpreted as count if n_total is given)

  • xy (ndarray) – probabilities p(x, y) or count of occurrence of x and y (interpreted as count if n_total is given)

  • n_total (Optional[int]) – if given, x, y and xy are interpreted as counts with n_total as size of the sample space

  • logfn (Callable) – logarithm function to use (default: np.log – natural logarithm)

  • k (int) – if k > 1, calculate PMI^k variant

  • normalize (bool) – if True, normalize to range [-1, 1]; gives NPMI measure

Returns

array with same length as inputs containing (N)PMI measures for each input probability

Return type

ndarray

tmtoolkit.tokenseq.numbertoken_to_magnitude(numbertoken, char='0', firstchar='1', below_one='0', zero='0', decimal_sep='.', thousands_sep=',', drop_sign=False, value_on_conversion_error='')

Convert a string token numbertoken that represents a number (e.g. “13”, “1.3” or “-1313”) to a string token that represents the magnitude of that number by repeating char (“10”, “1”, “-1000” for the mentioned examples). A different first character can be set via firstchar. The sign can be dropped via drop_sign.

If numbertoken cannot be converted to a float, either the value value_on_conversion_error is returned or numbertoken is returned unchanged if value_on_conversion_error is None.

Parameters
  • numbertoken (str) – token that represents a number

  • char (str) – character string used to represent single orders of magnitude

  • firstchar (str) – special character used for first character in the output

  • below_one (str) – special character used for numbers with absolute value below 1 (would otherwise return ‘’)

  • zero (str) – if numbertoken evaluates to zero, return this string

  • decimal_sep (str) – decimal separator used in numbertoken; this is language-specific

  • thousands_sep (str) – thousands separator used in numbertoken; this is language-specific

  • drop_sign (bool) – if True, drop the sign in number numbertoken, i.e. use absolute value

  • value_on_conversion_error (Optional[str]) – determines return value when numbertoken cannot be converted to a number; if None, return input numbertoken unchanged, otherwise return value_on_conversion_error

Returns

string that represents the magnitude of the input or an empty string

Return type

str

tmtoolkit.tokenseq.pmi(x, y, xy, n_total=None, logfn=<ufunc 'log'>, k=1, normalize=False)

Calculate pointwise mutual information measure (PMI) either from probabilities p(x), p(y), p(x, y) given as x, y, xy, or from total counts x, y, xy and additionally n_total. Setting k > 1 gives PMI^k variants. Setting normalized to True gives normalized PMI (NPMI) as in [Bouma2009]. See [RoleNadif2011] for a comparison of PMI variants.

Probabilities should be such that p(x, y) <= min(p(x), p(y)).

Parameters
  • x (ndarray) – probabilities p(x) or count of occurrence of x (interpreted as count if n_total is given)

  • y (ndarray) – probabilities p(y) or count of occurrence of y (interpreted as count if n_total is given)

  • xy (ndarray) – probabilities p(x, y) or count of occurrence of x and y (interpreted as count if n_total is given)

  • n_total (Optional[int]) – if given, x, y and xy are interpreted as counts with n_total as size of the sample space

  • logfn (Callable) – logarithm function to use (default: np.log – natural logarithm)

  • k (int) – if k > 1, calculate PMI^k variant

  • normalize (bool) – if True, normalize to range [-1, 1]; gives NPMI measure

Returns

array with same length as inputs containing (N)PMI measures for each input probability

Return type

ndarray

tmtoolkit.tokenseq.pmi2(x, y, xy, n_total=None, logfn=<ufunc 'log'>, *, k=2, normalize=False)

Calculate pointwise mutual information measure (PMI) either from probabilities p(x), p(y), p(x, y) given as x, y, xy, or from total counts x, y, xy and additionally n_total. Setting k > 1 gives PMI^k variants. Setting normalized to True gives normalized PMI (NPMI) as in [Bouma2009]. See [RoleNadif2011] for a comparison of PMI variants.

Probabilities should be such that p(x, y) <= min(p(x), p(y)).

Parameters
  • x (ndarray) – probabilities p(x) or count of occurrence of x (interpreted as count if n_total is given)

  • y (ndarray) – probabilities p(y) or count of occurrence of y (interpreted as count if n_total is given)

  • xy (ndarray) – probabilities p(x, y) or count of occurrence of x and y (interpreted as count if n_total is given)

  • n_total (Optional[int]) – if given, x, y and xy are interpreted as counts with n_total as size of the sample space

  • logfn (Callable) – logarithm function to use (default: np.log – natural logarithm)

  • k (int) – if k > 1, calculate PMI^k variant

  • normalize (bool) – if True, normalize to range [-1, 1]; gives NPMI measure

Returns

array with same length as inputs containing (N)PMI measures for each input probability

Return type

ndarray

tmtoolkit.tokenseq.pmi3(x, y, xy, n_total=None, logfn=<ufunc 'log'>, *, k=3, normalize=False)

Calculate pointwise mutual information measure (PMI) either from probabilities p(x), p(y), p(x, y) given as x, y, xy, or from total counts x, y, xy and additionally n_total. Setting k > 1 gives PMI^k variants. Setting normalized to True gives normalized PMI (NPMI) as in [Bouma2009]. See [RoleNadif2011] for a comparison of PMI variants.

Probabilities should be such that p(x, y) <= min(p(x), p(y)).

Parameters
  • x (ndarray) – probabilities p(x) or count of occurrence of x (interpreted as count if n_total is given)

  • y (ndarray) – probabilities p(y) or count of occurrence of y (interpreted as count if n_total is given)

  • xy (ndarray) – probabilities p(x, y) or count of occurrence of x and y (interpreted as count if n_total is given)

  • n_total (Optional[int]) – if given, x, y and xy are interpreted as counts with n_total as size of the sample space

  • logfn (Callable) – logarithm function to use (default: np.log – natural logarithm)

  • k (int) – if k > 1, calculate PMI^k variant

  • normalize (bool) – if True, normalize to range [-1, 1]; gives NPMI measure

Returns

array with same length as inputs containing (N)PMI measures for each input probability

Return type

ndarray

tmtoolkit.tokenseq.simple_collocation_counts(x, y, xy, n_total)

“Statistic” function that can be used in token_collocations and will simply return the number of collocations between tokens x and y passed as xy. Mainly useful for debugging purposes.

Parameters
  • x (Optional[ndarray]) – unused

  • y (Optional[ndarray]) – unused

  • xy (ndarray) – counts for collocations of x and y

  • n_total (Optional[int]) – total number of tokens (strictly positive)

Returns

simply returns xy

tmtoolkit.tokenseq.simplify_unicode_chars(token, method='icu', ascii_encoding_errors='ignore')

Simplify unicode characters in string token, i.e. remove diacritics, underlines and other marks. Requires PyICU to be installed when using method="icu".

Parameters
  • docs – a Corpus object

  • token (str) – string to simplify

  • method (str) –

    either "icu" which uses PyICU for “proper” simplification or "ascii" which tries to encode the characters as ASCII; the latter is not recommended and will simply dismiss any characters that cannot be converted to ASCII after decomposition

  • ascii_encoding_errors (str) – only used if method is "ascii"; what to do when a character cannot be encoded as ASCII character; can be either "ignore" (default – replace by empty character), "replace" (replace by "???") or "strict" (raise a UnicodeEncodeError)

Returns

simplified string

Return type

str

tmtoolkit.tokenseq.strip_tags(value)

Return the given HTML with all tags stripped and HTML entities and character references converted to Unicode characters.

Code taken and adapted from https://github.com/django/django/blob/main/django/utils/html.py.

Parameters

value (str) – input string

Returns

string without HTML tags

Return type

str

tmtoolkit.tokenseq.token_collocations(sentences, threshold=None, min_count=1, embed_tokens=None, statistic=functools.partial(<function pmi>, k=1, normalize=True), vocab_counts=None, glue=None, return_statistic=True, rank='desc', tokens_as_hashes=False, hashes2tokens=None, **statistic_kwargs)

Identify token collocations (frequently co-occurring token series) in a list of sentences of tokens given by sentences. Currently only supports bigram collocations.

Parameters
  • sentences (List[List[Union[str, int]]]) – list of sentences containing lists of tokens; tokens can be items of any type if glue is None

  • threshold (Optional[float]) – minimum statistic value for a collocation to enter the results; if None, results are not filtered

  • min_count (int) – ignore collocations with number of occurrences below this threshold

  • embed_tokens (Optional[Iterable]) – tokens that, if occurring inside an n-gram, are not counted; see token_ngrams

  • statistic (Callable) – function to calculate the statistic measure from the token counts; use one of the [n]pmi functions provided in this module or provide your own function which must accept parameters x, y, xy, n_total; see pmi for more information

  • vocab_counts (Optional[Mapping]) – pass already computed token type counts to prevent computing these again in this function

  • glue (Optional[str]) – if not None, provide a string that is used to join the collocation tokens

  • return_statistic (bool) – also return computed statistic

  • rank (Optional[str]) – if not None, rank the results according to the computed statistic in ascending (rank='asc') or descending (rank='desc') order

  • tokens_as_hashes (bool) – if True, return token type hashes (integers) instead of textual representations (strings)

  • hashes2tokens (Optional[Union[Dict[int, str], dict]]) – if tokens are given as integer hashes, this table is used to generate textual representations for the results

  • statistic_kwargs – additional arguments passed to statistic function

Returns

list of tuples (collocation tokens, score) if return_statistic is True, otherwise only a list of collocations; collocations are either a string (if glue is given) or a tuple of strings

Return type

List[Union[tuple, str]]

tmtoolkit.tokenseq.token_join_subsequent(tokens, matches, glue='_', tokens_dtype=None, return_glued=False, return_mask=False)

Select subsequent tokens as defined by list of indices matches (e.g. output of token_match_subsequent) and join those by string glue. Return a list of tokens where the subsequent matches are replaced by the joint tokens.

Warning

Only works correctly when matches contains indices of subsequent tokens.

Example:

token_glue_subsequent(['a', 'b', 'c', 'd', 'd', 'a', 'b', 'c'],
                      [np.array([1, 2]), np.array([6, 7])])
# ['a', 'b_c', 'd', 'd', 'a', 'b_c']
Parameters
  • tokens (Union[List[str], ndarray]) – a sequence of tokens

  • matches (List[ndarray]) – list of NumPy arrays with subsequent indices into tokens (e.g. output of token_match_subsequent)

  • glue (Optional[str]) – string for joining the subsequent matches or None to keep them as separate items in a list

  • tokens_dtype (Optional[Union[str, dtype]]) – if tokens is not a NumPy array, it will be converted as such; use this dtype for the array

  • return_glued (bool) – if True, return also a list of joint tokens

  • return_mask (bool) – if True, return also a NumPy integer array with the length of the input tokens list that marks the original input tokens in three ways: 0 means mask that original token, 1 means retain that original token, 2 means replace original token by newly generated joint token; if True, also only return newly generated joint subsequent tokens and not also the original tokens

Returns

either two-tuple, three-tuple or list depending on return_glued and return_mask

Return type

Union[list, tuple]

tmtoolkit.tokenseq.token_lengths(tokens)

Token lengths (number of characters of each token) in tokens.

Parameters

tokens (Union[Iterable[str], ndarray]) – list or NumPy array of string tokens

Returns

list of token lengths

Return type

List[int]

tmtoolkit.tokenseq.token_match(pattern, tokens, match_type='exact', ignore_case=False, glob_method='match', inverse=False)

Return a boolean NumPy array signaling matches between pattern and tokens. pattern will be compared with each element in sequence tokens either as exact equality (match_type is 'exact') or regular expression (match_type is 'regex') or glob pattern (match_type is 'glob'). For the last two options, pattern must be a string or compiled RE pattern, otherwise it can be of any type that allows equality checking.

See token_match_multi_pattern for a version of this function that accepts multiple search patterns.

Parameters
  • pattern (Any) – string or compiled RE pattern used for matching against tokens; when match_type is 'exact', pattern may be of any type that allows equality checking

  • tokens (Union[List[str], ndarray]) – list or NumPy array of string tokens

  • match_type (str) – one of: ‘exact’, ‘regex’, ‘glob’; if ‘regex’, search_token must be RE pattern; if glob, search_token must be a “glob” pattern like “hello w*” (see https://github.com/metagriffin/globre)

  • ignore_case (bool) – if True, ignore case for matching

  • glob_method (str) – if match_type is ‘glob’, use this glob method. Must be ‘match’ or ‘search’ (similar behavior as Python’s re.match or re.search)

  • inverse (bool) – invert the matching results

Returns

1D boolean NumPy array of length len(tokens) where elements signal matches between pattern and the respective token from tokens

Return type

ndarray

tmtoolkit.tokenseq.token_match_multi_pattern(search_tokens, tokens, match_type='exact', ignore_case=False, glob_method='match')

Return a boolean NumPy array signaling matches between any pattern in search_tokens and tokens. Works the same as token_match, but accepts multiple patterns as search_tokens argument.

Parameters
  • search_tokens (Any) – single string or list of strings that specify the search pattern(s); when match_type is 'exact', pattern may be of any type that allows equality checking

  • tokens (Union[List[str], ndarray]) – list or NumPy array of string tokens

  • match_type (str) – one of: ‘exact’, ‘regex’, ‘glob’; if ‘regex’, search_token must be RE pattern; if glob, search_token must be a “glob” pattern like “hello w*” (see https://github.com/metagriffin/globre)

  • ignore_case (bool) – if True, ignore case for matching

  • glob_method (str) – if match_type is ‘glob’, use this glob method. Must be ‘match’ or ‘search’ (similar behavior as Python’s re.match or re.search)

Returns

1D boolean NumPy array of length len(tokens) where elements signal matches

Return type

ndarray

tmtoolkit.tokenseq.token_match_subsequent(patterns, tokens, **match_opts)

Using N patterns in patterns, return each tuple of N matching subsequent tokens from tokens. Excepts the same token matching options via match_opts as token_match. The results are returned as list of NumPy arrays with indices into tokens.

Example:

# indices:   0        1        2         3        4       5       6
tokens = ['hello', 'world', 'means', 'saying', 'hello', 'world', '.']

token_match_subsequent(['hello', 'world'], tokens)
# [array([0, 1]), array([4, 5])]

token_match_subsequent(['world', 'hello'], tokens)
# []

token_match_subsequent(['world', '*'], tokens, match_type='glob')
# [array([1, 2]), array([5, 6])]

See also

token_match

Parameters
  • patterns (Sequence) – a sequence of search patterns as excepted by token_match

  • tokens (Union[list, ndarray]) – a sequence of string tokens to be used for matching

  • match_opts – token matching options as passed to token_match

Returns

list of NumPy arrays with subsequent indices into tokens

Return type

List[ndarray]

tmtoolkit.tokenseq.token_ngrams(tokens, n, join=True, join_str=' ', ngram_container=<class 'list'>, embed_tokens=None, keep_embed_tokens=True)

Generate n-grams of length n from list of tokens tokens. Either join the n-grams when join is True using join_str so that a list of joined n-gram strings is returned or, if join is False, return a list of n-gram lists (or other sequences depending on ngram_container). For the latter option, the tokens in tokens don’t have to be strings but can by of any type.

Optionally pass a set/list/tuple embed_tokens which contains tokens that, if occurring inside an n-gram, are not counted. See for example how a trigram 'bank of america' is generated when the token 'of' is set as embed_tokens, although we ask to generate bigrams:

> token_ngrams("I visited the bank of america".split(), n=2)
['I visited', 'visited the', 'the bank', 'bank of', 'of america']
> token_ngrams("I visited the bank of america".split(), n=2, embed_tokens={'of'})
['I visited', 'visited the', 'the bank', 'bank of america', 'of america']
Parameters
  • tokens (Sequence) – sequence of tokens; if join is True, this must be a list of strings

  • n (int) – size of the n-grams to generate

  • join (bool) – if True, join n-grams by join_str

  • join_str (str) – string to join n-grams if join is True

  • ngram_container (Callable) – if join is False, use this function to create the n-gram sequences

  • embed_tokens (Optional[Iterable]) – tokens that, if occurring inside an n-gram, are not counted

  • keep_embed_tokens (bool) – if True, keep embedded tokens in the result

Returns

list of joined n-gram strings or list of n-grams that are n-sized sequences

Return type

list

tmtoolkit.tokenseq.unique_chars(tokens)

Return a set of all characters used in tokens.

Parameters

tokens (Iterable[str]) – iterable of string tokens

Returns

set of all characters used in tokens

Return type

Set[str]

tmtoolkit.topicmod

Topic modeling sub-package with modules for model evaluation, model I/O, model statistics, parallel computation and visualization.

Functions and classes in tm_gensim, tm_lda and tm_sklearn implement parallel model computation and evaluation using popular topic modeling packages. You need to install the respective packages (lda, scikit-learn or gensim) in order to use them.

Evaluation metrics for Topic Modeling

Metrics for topic model evaluation.

In order to run model evaluations in parallel use one of the modules tm_gensim, tm_lda or tm_sklearn.

tmtoolkit.topicmod.evaluate.metric_arun_2010(topic_word_distrib, doc_topic_distrib, doc_lengths)

Calculate metric as in [Arun2010] using topic-word distribution topic_word_distrib, document-topic distribution doc_topic_distrib and document lengths doc_lengths.

Note

It will fail when num. of words in the vocabulary is less then the num. of topics (which is very unusual).

Warning

There’s no code available for the [Arun2010] paper. The code follows the procedures outlined in the paper so that its results could be reproduced for the NIPS dataset. See the discussion at https://github.com/nikita-moor/ldatuning/issues/7.

Arun2010(1,2)

Rajkumar Arun, V. Suresh, C. E. Veni Madhavan, and M. N. Narasimha Murthy. 2010. On finding the natural number of topics with latent dirichlet allocation: Some observations. In Advances in knowledge discovery and data mining, Mohammed J. Zaki, Jeffrey Xu Yu, Balaraman Ravindran and Vikram Pudi (eds.). Springer Berlin Heidelberg, 391–402. http://doi.org/10.1007/978-3-642-13657-3_43.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents

  • doc_lengths – array of length N with number of tokens per document

Returns

calculated metric

tmtoolkit.topicmod.evaluate.metric_cao_juan_2009(topic_word_distrib)

Calculate metric as in [Cao2009] using topic-word distribution topic_word_distrib.

Cao2009

Cao Juan, Xia Tian, Li Jintao, Zhang Yongdong, and Tang Sheng. 2009. A density-based method for adaptive LDA model selection. Neurocomputing — 16th European Symposium on Artificial Neural Networks 2008 72, 7–9: 1775–1781. <http://doi.org/10.1016/j.neucom.2008.06.011>.

Parameters

topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

Returns

calculated metric

tmtoolkit.topicmod.evaluate.metric_coherence_gensim(measure, topic_word_distrib=None, gensim_model=None, vocab=None, dtm=None, gensim_corpus=None, texts=None, top_n=20, return_coh_model=False, return_mean=False, **kwargs)

Calculate model coherence using Gensim’s CoherenceModel. See also this tutorial.

Define which measure to use with parameter measure:

  • 'u_mass'

  • 'c_v'

  • 'c_uci'

  • 'c_npmi'

Provide a topic word distribution topic_word_distrib OR a Gensim model gensim_model and the corpus’ vocabulary as vocab OR pass a gensim corpus as gensim_corpus. top_n controls how many most probable words per topic are selected.

If measure is 'u_mass', a document-term-matrix dtm or gensim_corpus must be provided and texts can be None. If any other measure than 'u_mass' is used, tokenized input as texts must be provided as 2D list:

[['some', 'text', ...],          # doc. 1
 ['some', 'more', ...],          # doc. 2
 ['another', 'document', ...]]   # doc. 3

If return_coh_model is True, the whole gensim.models.CoherenceModel instance will be returned, otherwise:

  • if return_mean is True, the mean coherence value will be returned

  • if return_mean is False, a list of coherence values (for each topic) will be returned

Provided kwargs will be passed to gensim.models.CoherenceModel or gensim.models.CoherenceModel.get_coherence_per_topic.

Note

This function also supports models from lda and sklearn (by passing topic_word_distrib, dtm and vocab)!

Parameters
  • measure – the coherence calculation type; one of the values listed above

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size if gensim_model is not given

  • gensim_model – a topic model from Gensim if topic_word_distrib is not given

  • vocab – vocabulary list/array if gensim_corpus is not given

  • dtm – document-term matrix of shape NxM with N documents and vocabulary size M if gensim_corpus is not given

  • gensim_corpus – a Gensim corpus if vocab is not given

  • texts – list of tokenized documents; necessary if using a measure other than 'u_mass'

  • top_n – number of most probable words selected per topic

  • return_coh_model – if True, return gensim.models.CoherenceModel as result

  • return_mean – if return_coh_model is False and return_mean is True, return mean coherence

  • kwargs – parameters passed to gensim.models.CoherenceModel or gensim.models.CoherenceModel.get_coherence_per_topic

Returns

if return_coh_model is True, return gensim.models.CoherenceModel as result; otherwise if return_mean is True, mean of all coherence values, otherwise array of length K with coherence per topic

tmtoolkit.topicmod.evaluate.metric_coherence_mimno_2011(topic_word_distrib, dtm, top_n=20, eps=1, include_prob=False, normalize=False, return_mean=False)

Calculate coherence metric according to [Mimno2011]. You need to provide a topic word distribution as topic_word_distrib and a document-term-matrix dtm (can be sparse). top_n controls how many most probable words per topic are selected.

If you set eps=1e-12 and normalize=True, this is equivalent to the “U_Mass” coherence metric as provided in the Gensim package and as wrapper function in metric_coherence_gensim with measure='u_mass'.

By default, it will return a NumPy array of coherence values per topic (same ordering as in topic_word_distrib). Set return_mean to True to return the mean of all topics instead.

Mimno2011

D. Mimno, H. Wallach, E. Talley, M. Leenders, A. McCullum 2011: Optimizing semantic coherence in topic models

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • dtm – document-term matrix of shape NxM with N documents and vocabulary size M

  • top_n – number of most probable words selected per topic

  • eps – smoothing constant epsilon

  • include_prob – if True, include probabilities of top words per topic in the calculations

  • normalize – if True, normalize coherence values

  • return_mean – if True, return mean of all coherence values, otherwise array of coherence per topic

Returns

if return_mean is True, mean of all coherence values, otherwise array of length K with coherence per topic

tmtoolkit.topicmod.evaluate.metric_griffiths_2004(logliks)

Calculate metric as in [GriffithsSteyvers2004].

Calculates the harmonic mean of the log-likelihood values logliks. Burn-in values should already be removed from logliks.

GriffithsSteyvers2004

Thomas L. Griffiths and Mark Steyvers. 2004. Finding scientific topics. Proceedings of the National Academy of Sciences 101, suppl 1: 5228–5235. http://doi.org/10.1073/pnas.0307752101

Note

Requires gmpy2 package for multiple-precision arithmetic to avoid numerical underflow.

Parameters

logliks – array with log-likelihood values

Returns

calculated metric

tmtoolkit.topicmod.evaluate.metric_held_out_documents_wallach09(dtm_test, theta_test, phi_train, alpha, n_samples=10000)

Estimation of the probability of held-out documents according to [Wallach2009] using a document-topic estimation theta_test that was estimated via held-out documents dtm_test on a trained model with a topic-word distribution phi_train and a document-topic prior alpha. Draw n_samples according to theta_test for each document in dtm_test (memory consumption and run time can be very high for larger n_samples and a large amount of big documents in dtm_test).

A document-topic estimation theta_test can be obtained from a trained model from the “lda” package or scikit-learn package with the transform() method.

Adopted MATLAB code originally from Ian Murray, 2009 and downloaded from umass.edu.

Note

Requires gmpy2 package for multiple-precision arithmetic to avoid numerical underflow.

Wallach2009

Wallach, H.M., Murray, I., Salakhutdinov, R. and Mimno, D., 2009. Evaluation methods for topic models.

Parameters
  • dtm_test – held-out documents of shape NxM with N documents and vocabulary size M

  • theta_test – document-topic estimation of dtm_test; shape NxK with K topics

  • phi_train – topic-word distribution of a trained topic model that should be evaluated; shape KxM

  • alpha – document-topic prior of the trained topic model that should be evaluated; either a scalar or an array of length K

Returns

estimated probability of held-out documents

tmtoolkit.topicmod.evaluate.results_by_parameter(res, param, sort_by=None, sort_desc=False)

Takes a list of evaluation results res returned by a topic model evaluation function – a list in the form:

[(parameter_set_1, {'<metric_name>': result_1, ...}),
 ...,
 (parameter_set_n, {'<metric_name>': result_n, ...})])

Then returns a list with tuple pairs using only the m parameter(s) listed in param from the parameter sets in the evaluation results such that the returned list is:

[(param_1_0, ..., param_1_m, {'<metric_name>': result_1, ...}),
 ...,
 (param_n_0, ..., param_n_m, {'<metric_name>': result_n, ...})]

Optionally order either by parameter value (sort_by is None - the default) or by result metric (sort_by='<metric name>').

Parameters
  • res – list of evaluation results

  • param – string of parameter name

  • sort_by – order by parameter value if this is None, or by a certain result metric given as string

  • sort_desc – sort in descending order

Returns

list with tuple pairs using only the parameter param from the parameter sets

Printing, importing and exporting topic model results

Functions for printing/exporting topic model results.

tmtoolkit.topicmod.model_io.ldamodel_full_doc_topics(doc_topic_distrib, doc_labels, colname_rowindex='_doc', topic_labels='topic_{i1}')

Generate a pandas DataFrame for the full doc-topic distribution doc_topic_distrib.

See also

ldamodel_top_doc_topics to retrieve only the most probable topics in the distribution as formatted pandas DataFrame; ldamodel_full_topic_words to retrieve the full topic-word distribution as dataframe

Parameters
  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • colname_rowindex – column name for the “row index”, i.e. the column that identifies each row

  • topic_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual topic labels

Returns

pandas DataFrame

tmtoolkit.topicmod.model_io.ldamodel_full_topic_words(topic_word_distrib, vocab, colname_rowindex='_topic', row_labels='topic_{i1}')

Generate a pandas DataFrame for the full topic-word distribution topic_word_distrib.

See also

ldamodel_top_topic_words to retrieve only the most probable words in the distribution as formatted pandas DataFrame; ldamodel_full_doc_topics to retrieve the full document-topic distribution as dataframe

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • vocab – vocabulary list/array of length K

  • colname_rowindex – column name for the “row index”, i.e. the column that identifies each row

  • row_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual row labels

Returns

pandas DataFrame

tmtoolkit.topicmod.model_io.ldamodel_top_doc_topics(doc_topic_distrib, doc_labels, top_n=3, val_fmt=None, topic_labels='topic_{i1}', col_labels=None, index_name='document')

Retrieve the top (i.e. most probable) top_n topics for each document in the document-topic distribution doc_topic_distrib as pandas DataFrame.

See also

ldamodel_full_doc_topics to retrieve the full distribution as formatted pandas DataFrame; ldamodel_top_topic_docs to retrieve the top documents per topic; ldamodel_top_topic_words to retrieve the top words per topic from a topic-word distribution; ldamodel_top_word_topics to retrieve the top topics per word from a topic-word distribution

Parameters
  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • top_n – number of most probable topics per document to select

  • val_fmt – format string for table cells where {lbl} is replaced by the respective topic name and {val} is replaced by the topic’s probability given the document

  • topic_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual topic labels

  • col_labels – format string for the columns where {i0} or {i1} are replaced by the respective zero- or one-indexed rank

  • index_name – name of the table index

Returns

pandas DataFrame

tmtoolkit.topicmod.model_io.ldamodel_top_topic_docs(doc_topic_distrib, doc_labels, top_n=3, val_fmt=None, topic_labels='topic_{i1}', col_labels=None, index_name='topic')

Retrieve the top (i.e. most probable) top_n documents for each topic in the document-topic distribution doc_topic_distrib as pandas DataFrame.

See also

ldamodel_full_doc_topics to retrieve the full distribution as formatted pandas DataFrame; ldamodel_top_doc_topics to retrieve the top topics per document; ldamodel_top_topic_words to retrieve the top words per topic from a topic-word distribution; ldamodel_top_word_topics to retrieve the top topics per word from a topic-word distribution

Parameters
  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • top_n – number of most probable documents per topic to select

  • val_fmt – format string for table cells where {lbl} is replaced by the respective document label and {val} is replaced by the topic’s probability given the document

  • topic_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual topic labels

  • col_labels – format string for the columns where {i0} or {i1} are replaced by the respective zero- or one-indexed rank

  • index_name – name of the table index

Returns

pandas DataFrame

tmtoolkit.topicmod.model_io.ldamodel_top_topic_words(topic_word_distrib, vocab, top_n=10, val_fmt=None, row_labels='topic_{i1}', col_labels=None, index_name='topic')

Retrieve the top (i.e. most probable) top_n words for each topic in the topic-word distribution topic_word_distrib as pandas DataFrame.

See also

ldamodel_full_topic_words to retrieve the full distribution as formatted pandas DataFrame; ldamodel_top_word_topics to retrieve the top topics per word from a topic-word distribution; ldamodel_top_doc_topics to retrieve the top topics per document from a document-topic distribution; ldamodel_top_topic_docs to retrieve the top documents per topic;

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • vocab – vocabulary list/array of length K

  • top_n – number of most probable words per topic to select

  • val_fmt – format string for table cells where {lbl} is replaced by the respective word from vocab and {val} is replaced by the word’s probability given the topic

  • row_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual row labels

  • col_labels – format string for the columns where {i0} or {i1} are replaced by the respective zero- or one-indexed rank

  • index_name – name of the table index

Returns

pandas DataFrame

tmtoolkit.topicmod.model_io.ldamodel_top_word_topics(topic_word_distrib, vocab, top_n=10, val_fmt=None, topic_labels='topic_{i1}', col_labels=None, index_name='token')

Retrieve the top (i.e. most probable) top_n topics for each word in the topic-word distribution topic_word_distrib as pandas DataFrame.

See also

ldamodel_full_topic_words to retrieve the full distribution as formatted pandas DataFrame; ldamodel_top_topic_words to retrieve the top words per topic from a topic-word distribution; ldamodel_top_doc_topics to retrieve the top topics per document from a document-topic distribution; ldamodel_top_topic_docs to retrieve the top documents per topic;

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • vocab – vocabulary list/array of length K

  • top_n – number of most probable words per topic to select

  • val_fmt – format string for table cells where {lbl} is replaced by the respective topic label from topic_labels and {val} is replaced by the word’s probability given the topic

  • topic_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual topic labels

  • col_labels – format string for the columns where {i0} or {i1} are replaced by the respective zero- or one-indexed rank

  • index_name – name of the table index

Returns

pandas DataFrame

tmtoolkit.topicmod.model_io.load_ldamodel_from_pickle(picklefile, **kwargs)

Load an LDA model object from a pickle file picklefile.

See also

save_ldamodel_to_pickle to save a model.

Warning

Python pickle files may contain malicious code. You should only load pickle files from trusted sources.

Parameters
Returns

dict with keys: 'model' – model instance; 'vocab' – vocabulary; 'doc_labels' – document labels; 'dtm' – optional document-term matrix;

tmtoolkit.topicmod.model_io.print_ldamodel_distribution(distrib, row_labels, val_labels, top_n=10)

Print top_n top values from a LDA model’s distribution distrib. This is a general function to print top values of any multivariate distribution given as matrix distrib with H rows and I columns, each identified by H row_labels and I val_labels.

See also

print_ldamodel_topic_words to print the top values of a topic-word distribution or print_ldamodel_doc_topics to print the top values of a document-topic distribution.

Parameters
  • distrib – either a topic-word or a document-topic distribution of shape HxI

  • row_labels – list/array of length H with label string for each row of distrib or format string

  • val_labels – list/array of length I with label string for each column of distrib or format string

  • top_n – number of top values to print

tmtoolkit.topicmod.model_io.print_ldamodel_doc_topics(doc_topic_distrib, doc_labels, top_n=3, val_labels='topic_{i1}')

Print top_n values from an LDA model’s document-topic distribution doc_topic_distrib.

See also

print_ldamodel_topic_words to print the top values of a topic-word distribution.

Parameters
  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • top_n – number of top values to print

  • val_labels – format string for each value where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual value labels

tmtoolkit.topicmod.model_io.print_ldamodel_topic_words(topic_word_distrib, vocab, top_n=10, row_labels='topic_{i1}')

Print top_n values from an LDA model’s topic-word distribution topic_word_distrib.

See also

print_ldamodel_doc_topics to print the top values of a document-topic distribution.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • vocab – vocabulary list/array of length K

  • top_n – number of top values to print

  • row_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual row labels

tmtoolkit.topicmod.model_io.save_ldamodel_summary_to_excel(excel_file, topic_word_distrib, doc_topic_distrib, doc_labels, vocab, top_n_topics=10, top_n_words=10, dtm=None, rank_label_fmt=None, topic_labels=None)

Save a summary derived from an LDA model’s topic-word and document-topic distributions (topic_word_distrib and doc_topic_distrib to an Excel file excel_file. Return the generated Excel sheets as dict of pandas DataFrames.

The resulting Excel file will consist of 6 or optional 7 sheets:

  • top_doc_topics_vals: document-topic distribution with probabilities of top topics per document

  • top_doc_topics_labels: document-topic distribution with labels (e.g. "topic_12") of top topics per document

  • top_doc_topics_labelled_vals: document-topic distribution combining probabilities and labels of top topics per document (e.g. "topic_12 (0.21)")

  • top_topic_word_vals: topic-word distribution with probabilities of top words per topic

  • top_topic_word_labels: topic-word distribution with top words per (e.g. "politics") topic

  • top_topic_words_labelled_vals: topic-word distribution combining probabilities and top words per topic (e.g. "politics (0.08)")

  • optional if dtm is given – marginal_topic_distrib: marginal topic distribution

Parameters
  • excel_file – target Excel file

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • vocab – vocabulary list/array of length K

  • top_n_topics – number of most probable topics per document to include in the summary

  • top_n_words – number of most probable words per topic to include in the summary

  • dtm – document-term matrix; shape NxM; if this is given, a sheet for the marginal topic distribution will be included

  • rank_label_fmt – format string for the rank labels where {i0} or {i1} are replaced by the respective zero- or one-indexed rank numbers (leave to None for default)

  • topic_labels – format string for each row index where {i0} or {i1} are replaced by the respective zero- or one-indexed topic numbers or an array with individual topic labels

Returns

dict mapping sheet name to pandas DataFrame

tmtoolkit.topicmod.model_io.save_ldamodel_to_pickle(picklefile, model, vocab, doc_labels, dtm=None, **kwargs)

Save an LDA model object model as pickle file to picklefile.

See also

load_ldamodel_from_pickle to load the saved model.

Parameters
  • picklefile – target file

  • model – LDA model instance

  • vocab – vocabulary list/array of length M

  • doc_labels – document labels list/array of length N

  • dtm – optional document-term matrix of shape NxM

  • kwargs – additional options for tmtoolkit.utils.pickle_data

Statistics for topic models and BoW matrices

Common statistics and tools for topic models.

SievertShirley2014(1,2,3,4)

Sievert, C., & Shirley, K. (2014, June). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces (pp. 63-70).

Chuang2012(1,2)

J. Chuang, C. Manning, J. Heer. 2012. Termite: Visualization Techniques for Assessing Textual Topic Models

tmtoolkit.topicmod.model_stats.exclude_topics(excl_topic_indices, doc_topic_distrib, topic_word_distrib=None, renormalize=True, return_new_topic_mapping=False)

Exclude topics with the indices excl_topic_indices from the document-topic distribution doc_topic_distrib (i.e. delete the respective columns in this matrix) and optionally re-normalize the distribution so that the rows sum up to 1 if renormalize is set to True.

Optionally also strip the topics from the topic-word distribution topic_word_distrib (i.e. remove the respective rows).

If topic_word_distrib is given, return a tuple with the updated doc.-topic and topic-word distributions, else return only the updated doc.-topic distribution.

Warning

The topics to be excluded are specified by zero-based indices.

Parameters
  • excl_topic_indices – list/array with zero-based indices of topics to exclude

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • topic_word_distrib – optional topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • renormalize – if True, re-normalize the document-topic distribution so that the rows sum up to 1

  • return_new_topic_mapping – if True, additional return a dict that maps old topic indices to new topic indices

Returns

new document-topic distribution where topics from excl_topic_indices are removed and optionally re-normalized; optional new topic-word distribution with same topics removed; optional dict that maps old topic indices to new topic indices

tmtoolkit.topicmod.model_stats.filter_topics(search_pattern, vocab, topic_word_distrib, top_n=None, thresh=None, match_type='exact', cond='any', glob_method='match', return_words_and_matches=False)

Filter topics defined as topic-word distribution topic_word_distrib across vocabulary vocab for a word (pass a string) or multiple words/patterns w (pass a list of strings). Either run pattern(s) w against the list of top words per topic (use top_n for number of words in top words list) or specify a minimum topic-word probability thresh, resulting in a list of words above this threshold for each topic, which will be used for pattern matching. You can also specify top_n and thresh.

Set the match parameter according to the options provided by token_match (exact matching, RE or glob matching). Use cond to specify whether at only one match suffices per topic when a list of patterns w is passed (cond='any') or all patterns must match (cond='all').

By default, this function returns a NumPy array containing the indices of topics that passed the filter criteria. If return_words_and_matches is True, this function additionally returns a NumPy array with the top words for each topic and a NumPy array with the pattern matches for each topic.

See also

See tmtoolkit.tokenseq.token_match for filtering options.

Parameters
  • search_pattern – single match pattern string or list of match pattern strings

  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • top_n – if given, consider only the top top_n words per topic

  • thresh – if given, consider only the words with a probability above thresh

  • match_type – one of: ‘exact’, ‘regex’, ‘glob’; if ‘regex’, search_token must be RE pattern; if glob, search_token must be a “glob” pattern like “hello w*” (see https://github.com/metagriffin/globre)

  • cond – either "any" or "all"; controls whether only one or all patterns must match if multiple match patterns are given

  • glob_method – if match_type is ‘glob’, use this glob method. Must be ‘match’ or ‘search’ (similar behavior as Python’s re.match or re.search)

  • return_words_and_matches – if True, additionally return list of arrays of words per topic and list of binary arrays indicating matches per topic

Returns

array of topic indices with matches; if return_words_and_matches is True, return two more lists as described above

tmtoolkit.topicmod.model_stats.generate_topic_labels_from_top_words(topic_word_distrib, doc_topic_distrib, doc_lengths, vocab, n_words=None, lambda_=1, labels_glue='_', labels_format='{i1}_{topwords}')

Generate unique topic labels derived from the top words of each topic. The top words are determined from the relevance score [SievertShirley2014] depending on lambda_. Specify the number of top words in the label with n_words. If n_words is None, a minimum number of words will be used to create unique labels for each topic. Topic labels are formed by joining the top words with labels_glue and formatting them with labels_format. Placeholders in labels_format are "{i0}" (zero-based topic index), "{i1}" (one-based topic index) and "{topwords}" (top words glued with labels_glue).

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • vocab – vocabulary array of length M

  • n_words – minimum number of words to be used to create unique labels

  • lambda – lambda parameter (influences weight of “log lift”)

  • labels_glue – string to join the top words

  • labels_format – final topic labels format string

Returns

NumPy array of topic labels; length is K

tmtoolkit.topicmod.model_stats.least_distinct_words(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None)

Order the words from vocab by distinctiveness score from least to most distinctive. Optionally only return the n least distinctive words.

Parameters
  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • n – if not None, return only the n least distinctive words

Returns

array of length M or n (if n is given) with least distinctive words

tmtoolkit.topicmod.model_stats.least_probable_words(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None)

Order the words from vocab by marginal word probability from least to most probable. Optionally only return the n least probable words.

Parameters
  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • n – if not None, return only the n most salient words

Returns

array of length M or n (if n is given) with least probable words

tmtoolkit.topicmod.model_stats.least_relevant_words_for_topic(vocab, rel_mat, topic, n=None)

Get words from vocab for topic ordered by least to most relevance according to [SievertShirley2014]. Use the relevance matrix rel_mat obtained from topic_word_relevance. Optionally only return the n least relevant words.

Parameters
  • vocab – vocabulary array of length M

  • rel_mat – relevance matrix; shape KxM, where K is number of topics, M is vocabulary size

  • topic – topic number (zero-indexed)

Returns

array of length M or n (if n is given) with least relevant words for topic topic

tmtoolkit.topicmod.model_stats.least_salient_words(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None)

Order the words from vocab by saliency score from least to most salient. Optionally only return the n least salient words.

See also

word_saliency

Parameters
  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • n – if not None, return only the n least salient words

Returns

array of length M or n (if n is given) with least salient words

tmtoolkit.topicmod.model_stats.marginal_topic_distrib(doc_topic_distrib, doc_lengths)

Return marginal topic distribution p(T) (topic proportions) given the document-topic distribution (theta) doc_topic_distrib and the document lengths doc_lengths. The latter can be calculated with doc_lengths.

Parameters
  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

Returns

array of size K (number of topics) with marginal topic distribution

tmtoolkit.topicmod.model_stats.marginal_word_distrib(topic_word_distrib, p_t)

Return the marginal word distribution p(w) (term proportions derived from topic model) given the topic-word distribution (phi) topic_word_distrib and the marginal topic distribution p(T) p_t. The latter can be calculated with marginal_topic_distrib.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • p_t – marginal topic distribution; array of size K

Returns

array of size M (vocabulary size) with marginal word distribution

tmtoolkit.topicmod.model_stats.most_distinct_words(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None)

Order the words from vocab by distinctiveness score from most to least distinctive. Optionally only return the n most distinctive words.

Parameters
  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • n – if not None, return only the n most distinctive words

Returns

array of length M or n (if n is given) with most distinctive words

tmtoolkit.topicmod.model_stats.most_probable_words(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None)

Order the words from vocab by marginal word probability from most to least probable. Optionally only return the n most probable words.

Parameters
  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • n – if not None, return only the n most salient words

Returns

array of length M or n (if n is given) with most probable words

tmtoolkit.topicmod.model_stats.most_relevant_words_for_topic(vocab, rel_mat, topic, n=None)

Get words from vocab for topic ordered by most to least relevance according to [SievertShirley2014]. Use the relevance matrix rel_mat obtained from topic_word_relevance. Optionally only return the n most relevant words.

Parameters
  • vocab – vocabulary array of length M

  • rel_mat – relevance matrix; shape KxM, where K is number of topics, M is vocabulary size

  • topic – topic number (zero-indexed)

Returns

array of length M or n (if n is given) with most relevant words for topic topic

tmtoolkit.topicmod.model_stats.most_salient_words(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None)

Order the words from vocab by saliency score from most to least salient. Optionally only return the n most salient words.

See also

word_saliency

Parameters
  • vocab – vocabulary array of length M

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • n – if not None, return only the n most salient words

Returns

array of length M or n (if n is given) with most salient words

tmtoolkit.topicmod.model_stats.top_n_from_distribution(distrib, top_n=10, row_labels=None, col_labels=None, val_labels=None)

Get top_n values from LDA model’s distribution distrib as DataFrame. Can be used for topic-word distributions and document-topic distributions. Set row_labels to a format string or a list. Set col_labels to a format string for the column names. Set val_labels to return value labels instead of pure values (probabilities).

Parameters
  • distrib – a 2D probability distribution of shape NxM from an LDA model

  • top_n – number of top values to take from each row of distrib

  • row_labels – either list of row label strings of length N or a single row format string

  • col_labels – column format string or None for default numbered columns

  • val_labels – value labels format string or None to return only the probabilities

Returns

pandas DataFrame with N rows and top_n columns

tmtoolkit.topicmod.model_stats.top_words_for_topics(topic_word_distrib, top_n=None, vocab=None, return_prob=False)

Generate sorted list of top_n words (or word indices) per topic in topic-word distribution topic_word_distrib.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • top_n – number of top words (according to probability given topic) to select per topic; if None return full sorted lists of words

  • vocab – vocabulary array of length M; if None, return word indices instead of word strings

  • return_prob – if True, also return sorted arrays of word probabilities given topic for each topic

Returns

list of length K consisting of sorted arrays of most probable words; arrays have length top_n or M (if top_n is None); if return_prob is True, another list of sorted arrays of word probabilities for each topic is returned

tmtoolkit.topicmod.model_stats.topic_word_relevance(topic_word_distrib, doc_topic_distrib, doc_lengths, lambda_)

Calculate the topic-word relevance score with a lambda parameter lambda_ according to [SievertShirley2014]:

relevance(w,t|lambda) = lambda * log phi_{t,w} + (1-lambda) * log (phi_{t,w} / p(w)), where

  • phi is the topic-word distribution,

  • p(w) is the marginal word probability.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

  • lambda – lambda parameter (influences weight of “log lift”)

Returns

matrix with topic-word relevance scores; shape KxM

tmtoolkit.topicmod.model_stats.word_distinctiveness(topic_word_distrib, p_t)

Calculate word distinctiveness according to [Chuang2012]:

distinctiveness(w) = KL(P(T|w), P(T)) = sum_T(P(T|w) log(P(T|w)/P(T))), where

  • KL is Kullback-Leibler divergence,

  • P(T) is marginal topic distribution,

  • P(T|w) is prob. of a topic given a word.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • p_t – marginal topic distribution; array of size K

Returns

array of size M (vocabulary size) with word distinctiveness

tmtoolkit.topicmod.model_stats.word_saliency(topic_word_distrib, doc_topic_distrib, doc_lengths)

Calculate word saliency according to [Chuang2012] as saliency(w) = p(w) * distinctiveness(w) for a word w.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_lengths – array of size N (number of docs) with integers indicating the number of terms per document

Returns

array of size M (vocabulary size) with word saliency

Parallel model fitting and evaluation with lda

Parallel model computation and evaluation using the lda package.

Available evaluation metrics for this module are listed in AVAILABLE_METRICS. See tmtoolkit.topicmod.evaluate for references and implementations of those evaluation metrics.

tmtoolkit.topicmod.tm_lda.AVAILABLE_METRICS = ('loglikelihood', 'cao_juan_2009', 'arun_2010', 'coherence_mimno_2011')

Available metrics for lda ("griffiths_2004", "held_out_documents_wallach09" are added when package gmpy2 is installed, several "coherence_gensim_" metrics are added when package gensim is installed).

tmtoolkit.topicmod.tm_lda.DEFAULT_METRICS = ('cao_juan_2009', 'coherence_mimno_2011')

Metrics used by default.

tmtoolkit.topicmod.tm_lda.compute_models_parallel(data, varying_parameters=None, constant_parameters=None, n_max_processes=None)

Compute several topic models in parallel using the “lda” package. Use a single or multiple document term matrices data and optionally a list of varying parameters varying_parameters. Pass parameters in constant_parameters dict to each model calculation. Use at maximum n_max_processes processors or use all available processors if None is passed.

data can be either a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix) or a dict with corpus ID -> Document-Term-Matrix mapping when calculating models for multiple corpora.

If data is a dict of named matrices, this function will return a dict with document ID -> result list. Otherwise it will only return a result list. A result list always is a list containing tuples (parameter_set, model) where parameter_set is a dict of the used parameters.

Parameters
  • data – either a (sparse) 2D array/matrix or a dict mapping dataset labels to such matrices

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate computation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

Returns

if passed data is 2D array, returns a list with tuples (parameter set, results); if passed data is a dict of 2D arrays, returns dict with same keys as data and the respective results for each dataset

tmtoolkit.topicmod.tm_lda.evaluate_topic_models(data, varying_parameters, constant_parameters=None, n_max_processes=None, return_models=False, metric=None, **metric_kwargs)

Compute several Topic Models in parallel using the “lda” package. Calculate the models using a list of varying parameters varying_parameters on a single Document-Term-Matrix data. Pass parameters in constant_parameters dict to each model calculation. Use at maximum n_max_processes processors or use all available processors if None is passed.

data must be a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix).

Will return a list of size len(varying_parameters) containing tuples (parameter_set, eval_results) where parameter_set is a dict of the used parameters and eval_results is a dict of metric names -> metric results:

[(parameter_set_1, {'<metric_name>': result_1, ...}),
 ...,
 (parameter_set_n, {'<metric_name>': result_n, ...})])

See also

Results can be simplified using tmtoolkit.topicmod.evaluate.results_by_parameter.

Parameters
  • data – a (sparse) 2D array/matrix

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate evaluation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

  • return_models – if True, also return the computed models in the evaluation results

  • metric – string or list of strings; if given, use only this metric(s) for evaluation; must be subset of available_metrics

  • metric_kwargs – dict of options for metric used metric(s)

Returns

list of evaluation results for each varying parameter set as described above

Parallel model fitting and evaluation with scikit-learn

Parallel model computation and evaluation using the scikit-learn package.

Available evaluation metrics for this module are listed in AVAILABLE_METRICS. See tmtoolkit.topicmod.evaluate for references and implementations of those evaluation metrics.

tmtoolkit.topicmod.tm_sklearn.AVAILABLE_METRICS = ('perplexity', 'cao_juan_2009', 'arun_2010', 'coherence_mimno_2011', 'coherence_gensim_u_mass', 'coherence_gensim_c_v', 'coherence_gensim_c_uci', 'coherence_gensim_c_npmi')

Available metrics for sklearn ("held_out_documents_wallach09" is added when package gmpy2 is installed, several "coherence_gensim_" metrics are added when package gensim is installed).

tmtoolkit.topicmod.tm_sklearn.DEFAULT_METRICS = ('perplexity', 'cao_juan_2009', 'coherence_mimno_2011')

Metrics used by default.

tmtoolkit.topicmod.tm_sklearn.compute_models_parallel(data, varying_parameters=None, constant_parameters=None, n_max_processes=None)

Compute several topic models in parallel using the “sklearn” package. Use a single or multiple document term matrices data and optionally a list of varying parameters varying_parameters. Pass parameters in constant_parameters dict to each model calculation. Use at maximum n_max_processes processors or use all available processors if None is passed.

data can be either a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix) or a dict with corpus ID -> Document-Term-Matrix mapping when calculating models for multiple corpora.

If data is a dict of named matrices, this function will return a dict with document ID -> result list. Otherwise it will only return a result list. A result list always is a list containing tuples (parameter_set, model) where parameter_set is a dict of the used parameters.

Parameters
  • data – either a (sparse) 2D array/matrix or a dict mapping dataset labels to such matrices

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate computation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

Returns

if passed data is 2D array, returns a list with tuples (parameter set, results); if passed data is a dict of 2D arrays, returns dict with same keys as data and the respective results for each dataset

tmtoolkit.topicmod.tm_sklearn.evaluate_topic_models(data, varying_parameters, constant_parameters=None, n_max_processes=None, return_models=False, metric=None, **metric_kwargs)

Compute several Topic Models in parallel using the “sklearn” package. Calculate the models using a list of varying parameters varying_parameters on a single Document-Term-Matrix data. Pass parameters in constant_parameters dict to each model calculation. Use at maximum n_max_processes processors or use all available processors if None is passed.

data must be a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix).

Will return a list of size len(varying_parameters) containing tuples (parameter_set, eval_results) where parameter_set is a dict of the used parameters and eval_results is a dict of metric names -> metric results:

[(parameter_set_1, {'<metric_name>': result_1, ...}),
 ...,
 (parameter_set_n, {'<metric_name>': result_n, ...})])

See also

Results can be simplified using tmtoolkit.topicmod.evaluate.results_by_parameter.

Parameters
  • data – a (sparse) 2D array/matrix

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate evaluation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

  • return_models – if True, also return the computed models in the evaluation results

  • metric – string or list of strings; if given, use only this metric(s) for evaluation; must be subset of available_metrics

  • metric_kwargs – dict of options for metric used metric(s)

Returns

list of evaluation results for each varying parameter set as described above

Parallel model fitting and evaluation with Gensim

Parallel model computation and evaluation using the Gensim package.

Available evaluation metrics for this module are listed in AVAILABLE_METRICS. See tmtoolkit.topicmod.evaluate for references and implementations of those evaluation metrics.

tmtoolkit.topicmod.tm_gensim.AVAILABLE_METRICS = ('perplexity', 'cao_juan_2009', 'arun_2010', 'coherence_mimno_2011', 'coherence_gensim_u_mass', 'coherence_gensim_c_v', 'coherence_gensim_c_uci', 'coherence_gensim_c_npmi')

Available metrics for Gensim.

tmtoolkit.topicmod.tm_gensim.DEFAULT_METRICS = ('perplexity', 'cao_juan_2009', 'coherence_mimno_2011', 'coherence_gensim_c_v')

Metrics used by default.

tmtoolkit.topicmod.tm_gensim.compute_models_parallel(data, varying_parameters=None, constant_parameters=None, n_max_processes=None)

Compute several topic models in parallel using the “gensim” package. Use a single or multiple document term matrices data and optionally a list of varying parameters varying_parameters. Pass parameters in constant_parameters dict to each model calculation. Use at maximum n_max_processes processors or use all available processors if None is passed.

data can be either a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix) or a dict with corpus ID -> Document-Term-Matrix mapping when calculating models for multiple corpora.

If data is a dict of named matrices, this function will return a dict with document ID -> result list. Otherwise it will only return a result list. A result list always is a list containing tuples (parameter_set, model) where parameter_set is a dict of the used parameters.

Parameters
  • data – either a (sparse) 2D array/matrix or a dict mapping dataset labels to such matrices

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate computation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

Returns

if passed data is 2D array, returns a list with tuples (parameter set, results); if passed data is a dict of 2D arrays, returns dict with same keys as data and the respective results for each dataset

tmtoolkit.topicmod.tm_gensim.evaluate_topic_models(data, varying_parameters, constant_parameters=None, n_max_processes=None, return_models=False, metric=None, **metric_kwargs)

Compute several Topic Models in parallel using the “gensim” package. Calculate the models using a list of varying parameters varying_parameters on a single Document-Term-Matrix data. Pass parameters in constant_parameters dict to each model calculation. Use at maximum n_max_processes processors or use all available processors if None is passed.

data must be a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix).

Will return a list of size len(varying_parameters) containing tuples (parameter_set, eval_results) where parameter_set is a dict of the used parameters and eval_results is a dict of metric names -> metric results:

[(parameter_set_1, {'<metric_name>': result_1, ...}),
 ...,
 (parameter_set_n, {'<metric_name>': result_n, ...})])

See also

Results can be simplified using tmtoolkit.topicmod.evaluate.results_by_parameter.

Parameters
  • data – a (sparse) 2D array/matrix

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate evaluation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

  • return_models – if True, also return the computed models in the evaluation results

  • metric – string or list of strings; if given, use only this metric(s) for evaluation; must be subset of available_metrics

  • metric_kwargs – dict of options for metric used metric(s)

Returns

list of evaluation results for each varying parameter set as described above

Visualize topic models and topic model evaluation results

Wordclouds from topic models

tmtoolkit.topicmod.visualize.DEFAULT_WORDCLOUD_KWARGS = {'background_color': None, 'color_func': <function _wordcloud_color_func_black>, 'height': 600, 'mode': 'RGBA', 'width': 800}

Default wordcloud settings for transparent background and black font; will be passed to wordcloud.WordCloud

tmtoolkit.topicmod.visualize.generate_wordclouds_for_topic_words(topic_word_distrib, vocab, top_n, topic_labels='topic_{i1}', which_topics=None, return_images=True, **wordcloud_kwargs)

Generate wordclouds for the top top_n words of each topic in topic_word_distrib.

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • vocab – vocabulary array of length M

  • top_n – number of top values to take from each row of distrib

  • topic_labels – labels used for each row; determine keys in in result dict; either single format string with placeholders "{i0}" (zero-based topic index) or "{i1}" (one-based topic index), or list of topic label strings

  • which_topics – if not None, a sequence of indices into rows of topic_word_distrib to select only these topics to generate wordclouds from

  • return_images – if True, store image objects instead of wordcloud.WordCloud objects in the result dict

  • wordcloud_kwargs – pass additional options to wordcloud.WordCloud; updates options in DEFAULT_WORDCLOUD_KWARGS

Returns

dict mapping row labels to wordcloud images or instances generated from each topic

tmtoolkit.topicmod.visualize.generate_wordclouds_for_document_topics(doc_topic_distrib, doc_labels, top_n, topic_labels='topic_{i1}', which_documents=None, return_images=True, **wordcloud_kwargs)

Generate wordclouds for the top top_n topics of each document in doc_topic_distrib.

Parameters
  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • top_n – number of top values to take from each row of distrib

  • topic_labels – labels used for each row; determine keys in in result dict; either single format string with placeholders "{i0}" (zero-based topic index) or "{i1}" (one-based topic index), or list of topic label strings

  • which_documents – if not None, a sequence of indices into rows of doc_topic_distrib to select only these topics to generate wordclouds from

  • return_images – if True, store image objects instead of wordcloud.WordCloud objects in the result dict

  • wordcloud_kwargs – pass additional options to wordcloud.WordCloud; updates options in DEFAULT_WORDCLOUD_KWARGS

Returns

dict mapping row labels to wordcloud images or instances generated from each document

tmtoolkit.topicmod.visualize.generate_wordcloud_from_probabilities_and_words(prob, words, return_image=True, wordcloud_instance=None, **wordcloud_kwargs)

Generate a single wordcloud for given probabilities (weights) prob of the respective words.

Parameters
  • prob – 1D array or sequence of probabilities for words

  • words – 1D array or sequence of word strings

  • return_images – if True, store image objects instead of wordcloud.WordCloud objects in the result dict

  • wordcloud_instance – optionally pass an already initialized wordcloud.WordCloud instance

  • wordcloud_kwargs – pass additional options to wordcloud.WordCloud; updates options in DEFAULT_WORDCLOUD_KWARGS

Returns

either a wordcloud image if return_images is True, otherwise a wordcloud.WordCloud instance

tmtoolkit.topicmod.visualize.generate_wordcloud_from_weights(weights, return_image=True, wordcloud_instance=None, **wordcloud_kwargs)

Generate a single wordcloud for a weights dict that maps words to “weights” (e.g. probabilities) which determine their size in the wordcloud.

Parameters
  • weights – dict that maps words to weights

  • return_images – if True, store image objects instead of wordcloud.WordCloud objects in the result dict

  • wordcloud_instance – optionally pass an already initialized wordcloud.WordCloud instance

  • wordcloud_kwargs – pass additional options to wordcloud.WordCloud; updates options in DEFAULT_WORDCLOUD_KWARGS

Returns

either a wordcloud image if return_images is True, otherwise a wordcloud.WordCloud instance

tmtoolkit.topicmod.visualize.write_wordclouds_to_folder(wordclouds, folder, file_name_fmt='{label}.png', **save_kwargs)

Save all wordcloud image objects in wordclouds to folder.

Parameters
  • wordclouds – dict mapping wordcloud label to wordcloud object

  • folder – target path

  • file_name_fmt – file name string format with placeholder "{label}"

  • save_kwargs – additional options passed to save method of each wordcloud image object

tmtoolkit.topicmod.visualize.generate_wordclouds_from_distribution(distrib, row_labels, val_labels, top_n, which_rows=None, return_images=True, **wordcloud_kwargs)

Generate wordclouds for each row in a given probability distribution distrib.

Note

Use generate_wordclouds_for_topic_words or generate_wordclouds_for_document_topics as shortcuts for creating wordclouds for a topic-word or document-topic distribution.

Parameters
  • distrib – 2D (sparse) array/matrix probability distribution

  • row_labels – labels for rows in probability distribution; these are used as keys in the return dict

  • val_labels – labels for values in probability distribution (e.g. vocabulary)

  • top_n – number of top values to take from each row of distrib

  • which_rows – if not None, select only the rows from this sequence of indices from distrib

  • return_images – if True, store image objects instead of wordcloud.WordCloud objects in the result dict

  • wordcloud_kwargs – pass additional options to wordcloud.WordCloud; updates options in DEFAULT_WORDCLOUD_KWARGS

Returns

dict mapping row labels to wordcloud images or instances generated from each distribution row

Plot heatmaps for topic models

tmtoolkit.topicmod.visualize.plot_doc_topic_heatmap(fig, ax, doc_topic_distrib, doc_labels, topic_labels=None, which_documents=None, which_document_indices=None, which_topics=None, which_topic_indices=None, xaxislabel=None, yaxislabel=None, **kwargs)

Plot a heatmap for a document-topic distribution doc_topic_distrib to a matplotlib Figure fig and Axes ax using doc_labels as document labels on the y-axis and topics from 1 to K (number of topics) on the x-axis.

Note

It is almost always necessary to select a subset of your document-topic distribution with the which_documents or which_topics parameters, as otherwise the amount of data to be plotted will be too high to give a reasonable picture.

Parameters
  • fig – matplotlib Figure object

  • ax – matplotlib Axes object

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • doc_labels – list/array of length N with a string label for each document

  • topic_labels – labels used for each row; either single format string with placeholders "{i0}" (zero-based topic index) or "{i1}" (one-based topic index), or list of topic label strings

  • which_documents – select documents via document label strings

  • which_document_indices – alternatively, select documents with zero-based document index in [0, N-1]

  • which_topics – select topics via topic label strings (when string array or list) or with one-based topic index in [1, K] (when integer array or list)

  • which_topic_indices – alternatively, select topics with zero-based topic index in [0, K-1]

  • xaxislabel – x axis label string

  • yaxislabel – y axis label string

  • kwargs – additional arguments passed to plot_heatmap

Returns

tuple of generated (matplotlib Figure object, matplotlib Axes object)

tmtoolkit.topicmod.visualize.plot_topic_word_heatmap(fig, ax, topic_word_distrib, vocab, topic_labels=None, which_topics=None, which_topic_indices=None, which_words=None, which_word_indices=None, xaxislabel=None, yaxislabel=None, **kwargs)

Plot a heatmap for a topic-word distribution topic_word_distrib to a matplotlib Figure fig and Axes ax using vocab as vocabulary on the x-axis and topics from 1 to n_topics=doc_topic_distrib.shape[1] on the y-axis.

Note

It is almost always necessary to select a subset of your topic-word distribution with the which_words or which_topics parameters, as otherwise the amount of data to be plotted will be too high to give a reasonable picture.

Parameters
  • fig – matplotlib Figure object

  • ax – matplotlib Axes object

  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • vocab – vocabulary array of length M

  • topic_labels – labels used for each row; either single format string with placeholders "{i0}" (zero-based topic index) or "{i1}" (one-based topic index), or list of topic label strings

  • which_topics – select topics via topic label strings (when string array or list and topic_labels is given) or with one-based topic index in [1, K] (when integer array or list)

  • which_topic_indices – alternatively, select topics with zero-based topic index in [0, K-1]

  • which_words – select words with one-based word index in [1, M]

  • which_word_indices – alternatively, select words with zero-based word index in [0, K-1]

  • xaxislabel – x axis label string

  • yaxislabel – y axis label string

  • kwargs – additional arguments passed to plot_heatmap

Returns

tuple of generated (matplotlib Figure object, matplotlib Axes object)

tmtoolkit.topicmod.visualize.plot_heatmap(fig, ax, data, xaxislabel=None, yaxislabel=None, xticklabels=None, yticklabels=None, title=None, grid=True, values_in_cells=True, round_values_in_cells=2, legend=False, fontsize_axislabel=None, fontsize_axisticks=None, fontsize_cell_values=None)

Generic heatmap plotting function for 2D matrix data.

Parameters
  • fig – matplotlib Figure object

  • ax – matplotlib Axes object

  • data – 2D array/matrix to be plotted as heatmap

  • xaxislabel – x axis label string

  • yaxislabel – y axis label string

  • xticklabels – list of x axis tick labels

  • yticklabels – list of y axis tick labels

  • title – plot title

  • grid – draw grid if True

  • values_in_cells – draw values of data in heatmap cells

  • round_values_in_cells – round these values to the given number of digits

  • legend – if True, draw a legend

  • fontsize_axislabel – font size for axis label

  • fontsize_axisticks – font size for axis ticks

  • fontsize_cell_values – font size for values in cells

Returns

tuple of generated (matplotlib Figure object, matplotlib Axes object)

Plot probability distribution rankings for topic models

tmtoolkit.topicmod.visualize.plot_topic_word_ranked_prob(fig, ax, topic_word_distrib, n, highlight_label_fmt='topic {i0}', highlight_label_other='other topics', title='Ranked word probability per topic', xaxislabel='word rank', yaxislabel='word probability', **kwargs)

Plot a topic-word probability distribution by ranking the probabilities in each row. This is for example useful in order to examine how many top words usually describe most of a topic.

Parameters
  • fig – matplotlib Figure object

  • ax – matplotlib Axes object

  • topic_word_distrib – topic-word probability distribution

  • n – limit max. shown word rank on x-axis

  • highlight_label_fmt – if highlight is given, use this format for labeling the highlighted rows

  • highlight_label_other – if highlight is given, use this as label for non-highlighted rows

  • title – plot title

  • xaxislabel – x-axis label

  • yaxislabel – y-axis label

  • kwargs – further arguments passed to plot_prob_distrib_ranked_prob

Returns

tuple of generated (matplotlib Figure object, matplotlib Axes object)

tmtoolkit.topicmod.visualize.plot_doc_topic_ranked_prob(fig, ax, doc_topic_distrib, n, highlight_label_fmt='document {i0}', highlight_label_other='other documents', title='Ranked topic probability per document', xaxislabel='topic rank', yaxislabel='topic probability', **kwargs)

Plot a document-topic probability distribution by ranking the probabilities in each row. This is for example useful in order to examine how many top topics usually describe most of a document.

Parameters
  • fig – matplotlib Figure object

  • ax – matplotlib Axes object

  • doc_topic_distrib – document-topic probability distribution

  • n – limit max. shown topic rank on x-axis

  • highlight_label_fmt – if highlight is given, use this format for labeling the highlighted rows

  • highlight_label_other – if highlight is given, use this as label for non-highlighted rows

  • title – plot title

  • xaxislabel – x-axis label

  • yaxislabel – y-axis label

  • kwargs – further arguments passed to plot_prob_distrib_ranked_prob

Returns

tuple of generated (matplotlib Figure object, matplotlib Axes object)

tmtoolkit.topicmod.visualize.plot_prob_distrib_ranked_prob(fig, ax, data, x_limit, log_scale=True, lw=1, alpha=0.1, highlight=None, highlight_label_fmt='{i0}', highlight_label_other='other', highlight_lw=3, highlight_alpha=0.3, title=None, xaxislabel='rank', yaxislabel='probability')

Plot a 2D probability distribution (one distribution for each row which should add up to 1) by ranking the probabilities in each row.

Parameters
  • fig – matplotlib Figure object

  • ax – matplotlib Axes object

  • data – a 2D probability distribution (one distribution for each row which should add up to 1)

  • x_limit – limit max. shown rank on x-axis

  • log_scale – if True, apply log scale on y-axis

  • lw – line width

  • alpha – line transparency

  • highlight – if given, pass a sequence or NumPy array with indices of rows in data, which should be highlighted

  • highlight_label_fmt – if highlight is given, use this format for labeling the highlighted rows

  • highlight_label_other – if highlight is given, use this as label for non-highlighted rows

  • highlight_lw – line width for highlighted distributions

  • highlight_alpha – line transparency for highlighted distributions

  • title – plot title

  • xaxislabel – x-axis label

  • yaxislabel – y-axis label

Returns

tuple of generated (matplotlib Figure object, matplotlib Axes object)

Plot topic model evaluation results

tmtoolkit.topicmod.visualize.plot_eval_results(eval_results, metric=None, param=None, xaxislabel=None, yaxislabel=None, title=None, title_fontsize='xx-large', subfig_fontsize='large', axes_title_fontsize='medium', show_metric_direction=True, metric_direction_font_size='medium', subplots_adjust_opts=None, figsize='auto', fig_opts=None, subfig_opts=None, subplots_opts=None)

Plot the evaluation results from eval_results, which must be a sequence containing (param_0, …, param_N, metric results) tuples, where param_N is the parameter value to appear on the x axis and all parameter combinations before are used to create a small multiples plot (if there are more than one param.). The metric results can be a dict structure containing the evaluation results for each metric. eval_results can be created using tmtoolkit.topicmod.evaluate.results_by_parameter.

Note

Due to a bug in matplotlib, it seems that it’s not possible to display a plot title when plotting small multiples and adjusting the positioning of the subplots. Hence you must set show_metric_direction to False when you’re displaying small multiples and need want to display a plot title.

Parameters
  • eval_results – topic evaluation results as sequence containing (param_0, …, param_N, metric results)

  • metric – either single string or list of strings; plot only this/these specific metric/s

  • param – names of the parameters used in eval_results

  • xaxislabel – x axis label string

  • yaxislabel – y axis label string

  • title – plot title

  • title_fontsize – font size for the figure title

  • axes_title_fontsize – font size for the plot titles

  • show_metric_direction – if True, show whether the shown metric should be minimized or maximized for optimization

  • metric_direction_font_size – font size for the metric optimization direction indicator

  • subplots_opts – options passed to Matplotlib’s plt.subplots()

  • subplots_adjust_opts – options passed to Matplotlib’s fig.subplots_adjust()

  • figsize – tuple (width, height) or "auto" (default)

  • fig_opts – additional parameters passed to Matplotlib’s plt.figure()

  • subfig_opts – additional parameters passed to Matplotlib’s fig.subfigures()

  • subplots_opts – additional parameters passed to Matplotlib’s subfig.subplots()

Returns

tuple of generated (matplotlib Figure object, matplotlib Subfigures, matplotlib Axes)

Other functions

tmtoolkit.topicmod.visualize.parameters_for_ldavis(topic_word_distrib, doc_topic_distrib, dtm, vocab, sort_topics=False)

Create a parameters dict that can be used with the pyLDAVis package by passing the dict params like pyLDAVis.prepare(**params).

Parameters
  • topic_word_distrib – topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size

  • doc_topic_distrib – document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics

  • dtm – document-term-matrix; shape NxM

  • vocab – vocabulary array/list of length M

  • sort_topics – if True, sort the topics

Returns

dict with parameters ready to use with pyLDAVis

Base classes for parallel model fitting and evaluation

Base classes for parallel model fitting and evaluation. See the specific functions and classes in tm_gensim, tm_lda and tm_sklearn for parallel processing with popular topic modeling packages.

Note

The classes and functions in this module are only important if you want to implement your own parallel model computation and evaluation.

class tmtoolkit.topicmod.parallel.MultiprocEvaluationRunner(worker_class, available_metrics, data, varying_parameters, constant_parameters=None, metric=None, metric_options=None, n_max_processes=None, return_models=False)

Specialization of MultiprocModelsRunner for parallel model evaluations.

__init__(worker_class, available_metrics, data, varying_parameters, constant_parameters=None, metric=None, metric_options=None, n_max_processes=None, return_models=False)

Initialize evaluation runner.

Parameters
  • worker_class – model computation worker class derived from MultiprocModelsWorkerABC

  • available_metrics – list/tuple with available metrics as strings

  • data – the data that the workers use for computations; 2D (sparse) array/matrix

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate computation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • metric – string or list of strings; if given, use only this metric(s) for evaluation; must be subset of available_metrics

  • metric_options – dict of options for metric used metric(s)

  • n_max_processes – maximum number of worker processes to spawn

  • return_models – if True, also return the computed models in the evaluation results

class tmtoolkit.topicmod.parallel.MultiprocEvaluationWorkerABC(worker_id, eval_metric, eval_metric_options, return_models, tasks_queue, results_queue, data, group=None, target=None, name=None, args=(), kwargs=None)

Specialization of MultiprocModelsWorkerABC for parallel model evaluations.

__init__(worker_id, eval_metric, eval_metric_options, return_models, tasks_queue, results_queue, data, group=None, target=None, name=None, args=(), kwargs=None)

Initialize parallel model evaluations worker class with an ID worker_id, a queue to receive tasks from tasks_queue, a queue to send results to results_queue and the data to operate on. Use evaluation metrics eval_metric.

Parameters
  • worker_id – process ID

  • eval_metric – list/tuple of strings of evaluation metrics to use

  • eval_metric_options – dict of options for metric used metric(s)

  • tasks_queue – queue to receive tasks from

  • results_queue – queue to send results to

  • data – data to operate on; a dict mapping dataset label to a dataset; can be anything but is usually a tuple of shared data pointers for sparse matrix in COO format

  • group – see Python’s multiprocessing.Process class

  • target – see Python’s multiprocessing.Process class

  • name – see Python’s multiprocessing.Process class

  • args – see Python’s multiprocessing.Process class

  • kwargs – see Python’s multiprocessing.Process class

class tmtoolkit.topicmod.parallel.MultiprocModelsRunner(worker_class, data, varying_parameters=None, constant_parameters=None, n_max_processes=None)

Runner class for distributing and managing worker processes for parallel model computation.

__init__(worker_class, data, varying_parameters=None, constant_parameters=None, n_max_processes=None)

Initiate runner class with a model computation worker class worker_class (which should be derived from MultiprocModelsWorkerABC). This class represents the worker processes and each will be instantiated with data and work on it with a different parameter set that can be passed via varying_parameters.

Parameters
  • worker_class – model computation worker class derived from MultiprocModelsWorkerABC

  • data – the data that the workers use for computations; 2D (sparse) array/matrix or a dict with such matrices; the latter allows to run all computations on different datasets at once

  • varying_parameters – list of dicts with parameters; each parameter set will be used in a separate computation

  • constant_parameters – dict with parameters that are the same for all parallel computations

  • n_max_processes – maximum number of worker processes to spawn

run()

Set up worker processes and run parallel computations. Blocks until all processes are done, then stops all workers and returns the results.

Returns

if passed data is 2D array, returns a list with tuples (parameter set, results); if passed data is a dict of 2D arrays, returns dict with same keys as data and the respective results for each dataset

shutdown_workers()

Send shutdown signal to all worker processes to stop them.

class tmtoolkit.topicmod.parallel.MultiprocModelsWorkerABC(worker_id, tasks_queue, results_queue, data, group=None, target=None, name=None, args=(), kwargs=None)

Abstract base class for parallel model computations worker class.

__init__(worker_id, tasks_queue, results_queue, data, group=None, target=None, name=None, args=(), kwargs=None)

Initialize parallel model computations worker class with an ID worker_id, a queue to receive tasks from tasks_queue, a queue to send results to results_queue and the data to operate on.

Parameters
  • worker_id – process ID

  • tasks_queue – queue to receive tasks from

  • results_queue – queue to send results to

  • data – data to operate on; a dict mapping dataset label to a dataset; can be anything but is usually a tuple of shared data pointers for sparse matrix in COO format

  • group – see Python’s multiprocessing.Process class

  • target – see Python’s multiprocessing.Process class

  • name – see Python’s multiprocessing.Process class

  • args – see Python’s multiprocessing.Process class

  • kwargs – see Python’s multiprocessing.Process class

fit_model(data, params)

Method stub to implement actually model fitting for data with parameter set params.

Parameters
  • data – data passed to the model fitting algorithm

  • params – parameter set dict

Returns

model fitting / evaluation results

run()

Run the process worker: Calls fit_model on each dataset and parameter set coming from the tasks queue.

send_results(doc, params, results)

Put the results into the results queue.

Parameters
  • doc – “document” / dataset label

  • params – used parameter set

  • results – generated results, e.g. fit model and/or evaluation results

tmtoolkit.utils

Misc. utility functions.

tmtoolkit.utils.applychain(funcs, initial_arg)

For n functions f in funcs apply f_0(initial) f_1() ... f_n().

Parameters
  • funcs (Iterable[Callable]) – functions to apply; must not be empty

  • initial_arg (Any) – initial function argument

Returns

result after applying all functions in funcs

Return type

Any

tmtoolkit.utils.argsort(seq)

Same as NumPy’s numpy.argsort but for Python sequences.

Parameters

seq (Sequence) – a sequence

Returns

indices into seq that sort seq

Return type

List[int]

tmtoolkit.utils.as_chararray(x)

Convert a NumPy array or sequence x to a NumPy character array. If x is already a NumPy character array, return a copy of it.

Parameters

x (Union[ndarray, Sequence]) – NumPy array or sequence

Returns

NumPy character array

Return type

ndarray

tmtoolkit.utils.combine_sparse_matrices_columnwise(matrices, col_labels, row_labels=None, dtype=None)

Given a sequence of sparse matrices in matrices and their corresponding column labels in col_labels, stack these matrices in rowwise fashion by retaining the column affiliation and filling in zeros, e.g.:

m1:
   C A D
   -----
   1 0 3
   0 2 0

m2:
   D B C A
   -------
   0 0 1 2
   3 4 5 6
   2 1 0 0

will result in:

A B C D
-------
0 0 1 3
2 0 0 0
2 0 1 0
6 4 5 3
0 1 0 2

(where the first two rows come from m1 and the other three rows from m2).

The resulting columns will always be sorted in ascending order.

Additionally you can pass a sequence of row labels for each matrix via row_labels. This will also sort the rows in ascending order according to the row labels.

Parameters
  • matrices (Sequence) – sequence of sparse matrices

  • col_labels (Sequence[Union[str, int]]) – column labels for each matrix in matrices; may be sequence of strings or integers

  • row_labels (Optional[Sequence[str]]) – optional sequence of row labels for each matrix in matrices

  • dtype (Optional[Union[str, dtype]]) – optionally specify the dtype of the resulting sparse matrix

Returns

a tuple with (1) combined sparse matrix in CSR format; (2) column labels of the matrix; (3) optionally row labels of the matrix if row_labels is not None.

Return type

Union[Tuple[csr_matrix, ndarray], Tuple[csr_matrix, ndarray, ndarray]]

tmtoolkit.utils.dict2df(data, key_name='key', value_name='value', sort=None)

Take a simple dictionary that maps any key to any scalar value and convert it to a dataframe that contains two columns: one for the keys and one for the respective values. Optionally sort by column sort.

Parameters
  • data (dict) – dictionary that maps keys to scalar values

  • key_name (str) – column name for the keys

  • value_name (str) – column name for the values

  • sort (Optional[str]) – optionally sort by this column; prepend by “-” to indicate descending sorting order, e.g. “-value”

Returns

a dataframe with two columns: one for the keys named key_name and one for the respective values named value_name

Return type

DataFrame

tmtoolkit.utils.disable_logging()

Disable logging for tmtoolkit package.

Return type

None

tmtoolkit.utils.empty_chararray()

Create empty NumPy character array.

Returns

empty NumPy character array

Return type

ndarray

tmtoolkit.utils.enable_logging(level=20, fmt='%(asctime)s:%(levelname)s:%(name)s:%(message)s', logging_handler=None, add_logging_handler=True, **stream_hndlr_opts)

Enable logging for tmtoolkit package with minimum log level level and log message format fmt. By default, logs to stderr via logging.StreamHandler. You may also pass your own log handler.

See also

Currently, only the logging levels INFO and DEBUG are used in tmtoolkit. See the Python Logging HOWTO guide for more information on log levels and formats.

Parameters
  • level (int) – minimum log level; default is INFO level

  • fmt (str) – log message format

  • logging_handler (Optional[Handler]) – pass custom logging handler to be used instead of

  • add_logging_handler (bool) – if True, add the logging handler to the logger

  • stream_hndlr_opts – optional additional parameters passed to logging.StreamHandler

Return type

None

tmtoolkit.utils.flatten_list(l)

Flatten a 2D sequence l to a 1D list and return it.

Although return sum(l, []) looks like a very nice one-liner, it turns out to be much much slower than what is implemented below.

Parameters

l (Iterable[Iterable]) – 2D sequence, e.g. list of lists

Returns

flattened list, i.e. a 1D list that concatenates all elements from each list inside l

Return type

list

tmtoolkit.utils.greedy_partitioning(elems_dict, k, return_only_labels=False)

Implementation of greed partitioning algorithm as explained here for a dict elems_dict containing elements with label -> weight mapping. A weight can be a number in an arbitrary range. Since this is used for task scheduling, you can think if it as the larger the weight, the bigger the task is.

The elements are placed in k bins such that the difference of sums of weights in each bin is minimized. The algorithm does not always find the optimal solution.

If return_only_labels is False, returns a list of k dicts with label -> weight mapping, else returns a list of k lists containing only the labels for the respective partitions.

Parameters
  • elems_dict (Dict[str, Union[int, float]]) – dictionary containing elements with label -> weight mapping

  • k (int) – number of bins

  • return_only_labels – if True, only return the labels in each bin

Returns

list with k bins, where each each bin is either a dict with label -> weight mapping if return_only_labels is False or a list of labels

Return type

Union[List[Dict[str, Union[int, float]]], List[List[str]]]

tmtoolkit.utils.linebreaks_win2unix(text)

Convert Windows line breaks \r\n to Unix line breaks \n.

Parameters

text (str) – text string

Returns

text string with Unix line breaks

Return type

str

tmtoolkit.utils.mat2d_window_from_indices(mat, row_indices=None, col_indices=None, copy=False)

Select an area/”window” inside of a 2D array/matrix mat specified by either a sequence of row indices row_indices and/or a sequence of column indices col_indices. Returns the specified area as a view of the data if copy is False, else it will return a copy.

Parameters
  • mat (ndarray) – a 2D NumPy array

  • row_indices (Optional[Union[List[int], ndarray]]) – list or array of row indices to select or None to select all rows

  • col_indices (Optional[Union[List[int], ndarray]]) – list or array of column indices to select or None to select all columns

  • copy – if True, return result as copy, else as view into mat

Returns

window into mat as specified by the passed indices

Return type

ndarray

tmtoolkit.utils.merge_dicts(dicts, sort_keys=False, safe=False)

Merge all dictionaries in dicts to form a single dict.

Parameters
  • dicts (Sequence[dict]) – sequence of dictionaries to merge

  • sort_keys (bool) – sort the keys in the resulting dictionary

  • safe (bool) – if True, raise a ValueError if sets of keys in dicts are not disjoint, else later dicts in the sequence will silently update already existing data with the same key

Returns

merged dictionary

Return type

dict

tmtoolkit.utils.merge_sets(sets, safe=False)

Merge all sets in sets to form a single set.

Parameters
  • sets (Sequence[set]) – sequence of sets to merge

  • safe (bool) – if True, raise a ValueError if sets are not disjoint

Returns

merged set

Return type

set

tmtoolkit.utils.path_split(path, base=None)

Split path path into its components:

path_split('a/simple/test.txt')
# ['a', 'simple', 'test.txt']
Parameters
  • path (str) – a file path

  • base (Optional[List[str]]) – path remainder (used for recursion)

Returns

components of the path as list

Return type

List[str]

tmtoolkit.utils.pickle_data(data, picklefile, **kwargs)

Save data in picklefile with Python’s pickle module.

Parameters
  • data (Any) – data to store in picklefile

  • picklefile (str) – either target file path as string or file handle

  • kwargs – further parameters passed to pickle.dump

Return type

None

tmtoolkit.utils.read_text_file(fpath, encoding, read_size=- 1, force_unix_linebreaks=True)

Read the text file at path fpath with character encoding encoding and return it as string.

Parameters
  • fpath (str) – path to file to read

  • encoding (str) – character encoding

  • read_size (int) – max. number of characters to read. -1 means read full file.

  • force_unix_linebreaks (bool) – if True, convert Windows linebreaks to Unix linebreaks

Returns

file content as string

Return type

str

tmtoolkit.utils.sample_dict(d, n)

Return a subset of the dictionary d as random sample of size n.

Parameters
  • d (dict) – dictionary to sample

  • n (int) – sample size; must be positive and smaller than or equal to len(d)

Returns

subset of the input dictionary

Return type

dict

tmtoolkit.utils.set_logging_level(level)

Set logging level for tmtoolkit package default logging handler.

Parameters

level (int) – minimum log level

Return type

None

tmtoolkit.utils.split_func_args(fn, args)

Split keyword arguments args so that all function arguments for fn are the first element of the returned tuple and the rest of the arguments are the second element of the returned tuple.

Parameters
  • fn (Callable) – a function

  • args (Dict[str, Any]) – keyword arguments dict

Returns

tuple with two dict elements: all arguments for fn are the first element, the rest of the arguments are the second element

Return type

Tuple[Dict[str, Any], Dict[str, Any]]

tmtoolkit.utils.unpickle_file(picklefile, **kwargs)

Load data from picklefile with Python’s pickle module.

Warning

Python pickle files may contain malicious code. You should only load pickle files from trusted sources.

Parameters
  • picklefile (str) – either target file path as string or file handle

  • kwargs – further parameters passed to pickle.load

Returns

data stored in picklefile

Return type

Any